Back to Mathematics for Machine Learning: Linear Algebra

stars

10,241 ratings

•

2,057 reviews

In this course on Linear Algebra we look at what linear algebra is and how it relates to vectors and matrices. Then we look through what vectors and matrices are and how to work with them, including the knotty problem of eigenvalues and eigenvectors, and how to use these to solve problems. Finally we look at how to use these to do fun things with datasets - like how to rotate images of faces and how to extract eigenvectors to look at how the Pagerank algorithm works.
Since we're aiming at data-driven applications, we'll be implementing some of these ideas in code, not just on pencil and paper. Towards the end of the course, you'll write code blocks and encounter Jupyter notebooks in Python, but don't worry, these will be quite short, focussed on the concepts, and will guide you through if you’ve not coded before.
At the end of this course you will have an intuitive understanding of vectors and matrices that will help you bridge the gap into linear algebra problems, and how to apply these concepts to machine learning....

NS

Dec 22, 2018

Professors teaches in so much friendly manner. This is beginner level course. Don't expect you will dive deep inside the Linear Algebra. But the foundation will become solid if you attend this course.

CS

Mar 31, 2018

Amazing course, great instructors. The amount of working linear algebra knowledge you get from this single course is substantial. It has already helped solidify my learning in other ML and AI courses.

Filter by:

By praneel a

•Jul 7, 2021

very nice

By Zala R

•May 26, 2020

fantastic

By KRAKOU D G S

•May 23, 2020

very good

By Sharob S

•Mar 4, 2019

Loved it.

By EL O A

•May 20, 2018

Very nice

By NITESH J

•Jul 5, 2020

TOO long

By TAVVA G M

•May 17, 2020

good one

By Thita A I S

•Mar 2, 2021

thank's

By Millati A L

•Mar 25, 2021

yesss

By G A N M

•Oct 14, 2020

Good!

By Luciano M

•Sep 27, 2018

Good!

By venkatadurga P

•Sep 13, 2021

good

By Persis

•Jul 18, 2020

gfhf

By Zhassulan S

•May 24, 2020

Good

By Ishan Y A

•May 19, 2020

nice

By Li J

•May 20, 2018

nice

By Reed R

•Jul 14, 2018

The stated goal of the course is to provide a sufficient base of knowledge in linear algebra for applied data science i.e. (a) to teach linear algebra without gory proofs or endless grinding through algorithms by hand and (b) to foreground geometric interpretations of linear algebra that can be recalled for many data science techniques and visualized with common data science tools. While I appreciate this goal and enjoyed the early foray into projection, I never felt the "a ha" moments I did as an undergrad in a class that used Gil Strang's "Introduction to Linear Algebra" (which I reread alongside this course as a supplement). The course seems to ask for some faith that various concepts introduced earlier in the course will be united by the end, but never makes good; opting instead for a kind of sleight of hand: having students implement the Page Rank algorithm with the intention that this will draw together the core concepts of the course. It could be that I was just looking for a more complete treatment of the subject than the course ever intends to offer, but I strongly felt that with a bit of restructuring, that the subject could be presented primarily intuitively, but with a level of clarity and artfulness in its conclusion that will ensure that students remember the core concepts beyond when they remember its presentation.

By Eitan A

•Jan 12, 2020

As of this writing, I am almost done with week 4 of Mathematics for Machine Learning: Linear Algebra. The content of the course is excellent and professor David Dye's lectures are to be commended no doubt. The reason for my low rating is because the programming assignments are broken and that's really not acceptable for paid offering such as this. To clarify, at various points throughout this course, students are asked to complete a programming assignment. The student is presented with a button which says, "Open Notebook". The student is supposed to click this button and be redirected to a Jupyter Notebook (and interactive Python execution environment). Unfortunately, instead of being redirected, click on this button results in a "404 Not Found" error. There are various discussions in the class discussion forum regarding this issue (some months old), but no action has been taken to resolve this issue. Luckily, someone taking the course managed to find the programming assignments and posted them on google docs for others to use. I've been working these which is fine, but as I said, we're paying for these courses, someone should be resolving this.

By Maprang

•Jun 16, 2020

I never took Linear Algebra in university. The last time I got exposed to this topic was more than 10 years ago when I was still in junior high. This course is very condensed. Each video covers each topic relevant to ML very briefly and the instructors go very fast on explaining each topic. This means students have to do a lot more research on their own to really comprehend the concepts. What's nice about this course is the programming assignments. They give you a chance to apply math concepts to the computational model. Something like this you wouldn't have a chance to do if you don't spend on an online course like this one, I guess. Overall, I think this course provides values in a way that gives you an overview of how Linear Algebra is used in ML. For me personally, I know I still need to consult other sources online to further understand Linear Algebra as I'm not sure that after finishing this course I've got adequate knowledge to pursue ML. What all that said, hence I give this course 3 stars.

By Avinaash S

•Sep 9, 2020

The lecture material in this course is great, and the quizzes are a lot of fun and it provides good resources for learning. However, the programming assignments are a pain due to lack of guidance and the grades are penalized due to minor things like indentations as opposed to actual math errors. This isn't a python course, its a math course, and grades should be awarded and penalized based on the math skills one has acquired throughout the course, not on the programming or whether an indentation is off. I highly recommend the course to learn linear algebra but I strongly encourage the instructors to improve the programming assignments or alter the assessment methods.

By MR T

•Apr 24, 2020

It must be difficult to pitch the level of these courses.

I have been taught Data Science whilst on an apprenticeship but didn't feel the maths was taught rigorously enough and hoped this would fill gaps of in knowledge.

The breadth of the concepts covered on the course achieved that but a lot of research was required from other resources to clarify certain topics which is why I think a beginner rating for this course might not be fair.

If you are not confident with maths, this course is achievable but expect to devote time to on other sites.

The PDF supplement is concise but useful for reference

By Meng Y

•Jul 26, 2020

Sometime the course does not clarify some principle. Also, I still cannot understanding that why the eigenvectors have relationships with page rank and why can we use the probability of reaching the link to each page as a vector. I cannot understand the relationship. Plus, the final quiz contains something that I have not learnt in the course, such as damping. I still cannot understand the Quiz2-5. I learn much in courses week 1-4, but I am much confused about the week 5. Thank you for listening.

By Shreyas S

•Apr 30, 2020

Fiirstly, going with the positives , the instructors were clear and effective in teaching the subject. Also,the feedback from the assignments were also good .Video quality was amazing.

I also felt that it was a very brief course, not worth an average Indian father's one week income.Also there was no option for Audit. Also, most assignment were substandard and involved lot of calculations which I felt is a waste of time. The coding assignments were also pretty simple and straight-forward.

By Anweshita D

•Jun 29, 2018

Your discussion forum really needs to be better. It seems to be the only place where any sort of doubt clearing can be done and very rarely have I seen TA's answering unless it's a grading issue. The problem with this sort of answering is that if any coding concepts are unclear, either they are solved by trial and error or after going through Google multiple times. And for a course that is paid for, I shouldn't have to make this much of an effort just to have my doubts cleared.

By Steve

•Jul 4, 2020

The course starts well and in general the first instructor does a good job trying to help the student develop an intuition of the concepts. However, weeks 4 and 5 are extremely weak. Very important concepts like eigenvalues and eigenvectors are poorly explained. The final quiz on these concepts asks questions that were never discussed or explained in the videos. I found I needed to go elsewhere on the Internet (like 3Brown1Blue) just to help me get through some of the quizes.

- Google Data Analyst
- Google Project Management
- Google UX Design
- Google IT Support
- IBM Data Science
- IBM Data Analyst
- IBM Data Analytics with Excel and R
- IBM Cybersecurity Analyst
- IBM Data Engineering
- IBM Full Stack Cloud Developer
- Facebook Social Media Marketing
- Facebook Marketing Analytics
- Salesforce Sales Development Representative
- Salesforce Sales Operations
- Intuit Bookkeeping
- Preparing for Google Cloud Certification: Cloud Architect
- Preparing for Google Cloud Certification: Cloud Data Engineer
- Launch your career
- Prepare for a certification
- Advance your career

- Skills for Data Science Teams
- Data Driven Decision Making
- Software Engineering Skills
- Soft Skills for Engineering Teams
- Management Skills
- Marketing Skills
- Skills for Sales Teams
- Product Manager Skills
- Skills for Finance
- Popular Data Science Courses in the UK
- Beliebte Technologiekurse in Deutschland
- Popular Cybersecurity Certifications
- Popular IT Certifications
- Popular SQL Certifications
- Marketing Manager Career Guide
- Project Manager Career Guide
- Python Programming Skills
- Web Developer Career Guide
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Professional Certificates
- University Certificates
- MBA & Business Degrees
- Data Science Degrees
- Computer Science Degrees
- Data Analytics Degrees
- Public Health Degrees
- Social Sciences Degrees
- Management Degrees
- Degrees from Top European Universities
- Master's Degrees
- Bachelor's Degrees
- Degrees with a Performance Pathway
- Bsc Courses
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- See all certificates